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Precalculus Problems

1. Find the remainder of the division (z* — 4x3 + 62% — 3x + 1) + (22 — 22 + 1)

(A)2r—1 (B)z (C)3z—2 (D)2—=x (E)z—1

Solution: We observe first that (r — 1)> = 2? — 2z + 1 and one can check that
(r — 1)* = 2* — 423 + 622 — 42 + 1 (or by looking at the Pascal’s triangle). Hence,

vt — 42 +62° -3+ 1= (v — 1)} (x — 1)* + ,
which gives the answer B. [ |

2. For some positive numbers a and b we have the identity

sin9x  cos9zx

T
=acotbr, x € (0, —

cos3xr  sin3zx 12 )

What is 2a + b?

(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

Solution: If we bring to the same denominator, the two fractions, and use the addition
formula for cosine we get

sin9z  cos9x  cos9xcos3x +sin9zsin3x  cos(9x — 3x)
E:= + o = . == .
cos3x  sindx sin 3x cos 3x sin 3x cos 3z

Using the double angle formula, sin(2«) = 2sin v cos ar, we can continue

cos 6x cos 6x

sin 3x cos 3x sin 6x

= 2cot 6z,

which gives a = 2 and b = 6. Then we obtain 2a + b = 10 and so B is the correct
answer. |



3. If 0 is an angle in the third quadrant and tan 6 = %, what is the value of 28 csc 0 ¢

Solution: The numbers 28, 45 and 53 form a Pythagorean triple (53% — 45? = (53 —
45)(53 + 45) = 8(98) = 16(49) = 4?(7*) = 28°). In the third quadrant cscf = & = —
and so 28 csc § = —53 which gives the answer E. [

4. [#°] The cubic equation 2x3 + 3x? + 5x + 2 = 0 has two solutions, x1 and x5, which are
not real numbers (pure complex). Find xq + xo.

(A) —1 (B) 1 (C) —2 (D) 2 (E) -3

Solution: We check to see if the given equation has any rational roots. The possible
such roots are £1, +2 or £(1/2). With a little luck one may find that —1/2 is indeed
a zero, and so

20° + 322 + 50+ 2= (2v+ 1)(2® + = + 2)

which means the other two roots (which are indeed pure complex), by Viete’s Relations,
add up to —1 (Answer: A). [

5. Find the area of the triangle with sides a =9, b =10 and ¢ = 17.

Solution: Using Heron’s formula we get A = /s(s —a)(s — b)(s — ¢), where s =
atbte — 18, andso s —a =9, s —b =28, s — ¢ = 1. Therefore, A = /18(9)(8) = 3(6)2
and so D is a correct answer. [

6. [+'] If t =log, a = logg b = logy(a — 3b), what is § 7

Solution: From the first equality we see that a = 4!, and then from the second equality,
we have b = 6' and similarly a—3b/2 = 9. Hence, a(a—3b/2) = 41(9!) = 36" = 6% = b2
This implies the equality a®> — 3ab/2 — b* = 0 or if we denote by x = a/b (note that
b # 0), we get a quadratic equation in x: 22 —3x/2—1 = 0. We can solve this by using
the quadratic formula or by completing the square: (z — 3/4)*> =1+ 9/16 = 25/16
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which gives the only positive solution # = 3/4 + 5/4 = 2. Therefore a/b = 2 (Answer:
B). |

. The equation x'°8% = ‘%: has two solutions, say x1 and x4, with x1 < xo. What is
x9 —xy ¢ Hint: Consider the logarithm base three of each side of the given equation.

Solution: Let us denote by ¢ = logsx and (using the hint) observe that the given
equation is equivalent to logs(z'983%) = log3(%5) or t* = 3t — 2. This last quadratic
equation can be solved simply by factorization: (t—1)(t —2) = 0. So, z; = 3! = 3 and
29 = 32 =9. So, C is the correct answer. [ |

8. [¥*|In the triangle ABC' the angle ZA is
60° and the angle /B 1is equal to 45°. The
angle bisector of the angle /A intersects
BC at D. Knowing that AD = 10 and 60
that BC = m+/n, where m and n are
natural numbers with n not divisible by the
square of a prime number, what is m +n?

45

Solution: We observe that the angle ZADC = 30°4-45° = 75° and the angle ZACB =
180° — (60° + 45°) = 75°. Hence, the triangle AADC is an isosceles triangle, so
AD = AC = 10. Using the Law of Sines in AABC, we get

AC BC

sin45°  sin 60°

which implies BC' = 10\/3/\/5 = 5v/6. This means m = 5 and n = 6. Hence the
answer is C. [
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9. [¥’]In__the trapezoid ABCD, AB A B
and CD are perpendicular to AD.
Knowing that AD = 6 < BC = \
AB + CD, what is AB - CD? \

Solution: Without loss of generality, we may assume that x := AB < y := DC (if
these are equal, ABCD is a rectangle, and this is not possible from the assumption
AD = 6 < BC.) We observe that if BE is drawn perpendicular to DC' (as in the
figure associated) then AB = DE =x, BE =6, EC =y —z, BC = x4y and so, by
the Pythagorean theorem in the triangle BEC we obtain (z + y)?> = 6° + (y — x)? or

4xy = 36. This implies zy = 9, so the answer is A. [ |

10. [«'] In the accompanying figure we have a
reqular octahedron. We denote the dihedral
angle between its faces by a (that is, o =
2(mZLAMO)). What is the value of cos a?

Solution: As in the figure associated, we let M be the midpoint of BC and O the
center of the square BCDE. In the triangle AMO we have cos ZAMO = cos § = 9‘—%
Because of the symmetry, OM = CD/2 = BC/2 = MC. The side AM can be found
with the Pythagorean theorem in the right trlangle AMC: AM? = AC? — M(C? =
4MC? — MC? = 3MC?. Hence, cos § = % = Mcf Then, using the double angle
formula we obtain 5 .

«
—92cos?— —1=2-—-1=—°=,
COS ¥ COS2 3 3

Therefore, the answer in this case is B. [
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