Solution to the First Annual Columbus State Pre-Calculus Tournament

Sponsored by

The Columbus State University Department of Mathematics

April 16^{th} , 2013

Precalculus Problems

- 1. Find the remainder of the division $(x^4 4x^3 + 6x^2 3x + 1) \div (x^2 2x + 1)$
 - (A) 2x 1 (B) x (C) 3x 2 (D) 2 x (E) x 1

Solution: We observe first that $(x-1)^2 = x^2 - 2x + 1$ and one can check that $(x-1)^4 = x^4 - 4x^3 + 6x^2 - 4x + 1$ (or by looking at the Pascal's triangle). Hence,

$$x^4 - 4x^3 + 6x^2 - 3x + 1 = (x - 1)^2(x - 1)^2 + x$$

which gives the answer B.

2. For some positive numbers a and b we have the identity

$$\frac{\sin 9x}{\cos 3x} + \frac{\cos 9x}{\sin 3x} = a \cot bx, \ x \in (0, \frac{\pi}{12}).$$

What is 2a + b?

(A) 9 (B) 10 (C) 11 (D) 12 (E) 13

Solution: If we bring to the same denominator, the two fractions, and use the addition formula for *cosine* we get

$$E := \frac{\sin 9x}{\cos 3x} + \frac{\cos 9x}{\sin 3x} = \frac{\cos 9x \cos 3x + \sin 9x \sin 3x}{\sin 3x \cos 3x} = \frac{\cos(9x - 3x)}{\sin 3x \cos 3x}.$$

Using the double angle formula, $\sin(2\alpha) = 2\sin\alpha\cos\alpha$, we can continue

$$E = \frac{\cos 6x}{\sin 3x \cos 3x} = 2\frac{\cos 6x}{\sin 6x} = 2\cot 6x,$$

which gives a = 2 and b = 6. Then we obtain 2a + b = 10 and so B is the correct answer.

3. If θ is an angle in the third quadrant and $\tan \theta = \frac{28}{45}$, what is the value of $28 \csc \theta$?

(A) -63

(B) -45

(C) -47

(D) -50

(E) -53

Solution: The numbers 28, 45 and 53 form a Pythagorean triple $(53^2 - 45^2 = (53 - 45)^2 = (53 45)(53+45) = 8(98) = 16(49) = 4^2(7^2) = 28^2$. In the third quadrant $\csc \theta = \frac{r}{y} = -\frac{53}{28}$ and so $28\csc\theta = -53$ which gives the answer E.

4. $[*^5]$ The cubic equation $2x^3 + 3x^2 + 5x + 2 = 0$ has two solutions, x_1 and x_2 , which are not real numbers (pure complex). Find $x_1 + x_2$.

(A) -1

(B) 1

(C) -2 (D) 2 (E) -3

Solution: We check to see if the given equation has any rational roots. The possible such roots are ± 1 , ± 2 or $\pm (1/2)$. With a little luck one may find that -1/2 is indeed a zero, and so

$$2x^3 + 3x^2 + 5x + 2 = (2x+1)(x^2 + x + 2)$$

which means the other two roots (which are indeed pure complex), by Viete's Relations, add up to -1 (Answer: A).

5. Find the area of the triangle with sides a = 9, b = 10 and c = 17.

(A) 20

(B) 22

(C) 24

(D) 36

(E) 18

Solution: Using Heron's formula we get $A = \sqrt{s(s-a)(s-b)(s-c)}$, where s = $\frac{a+b+c}{2} = 18$, and so s-a=9, s-b=8, s-c=1. Therefore, $A=\sqrt{18(9)(8)}=3(6)2$ and so D is a correct answer.

6. $[*^4]$ If $t = \log_4 a = \log_6 b = \log_9 (a - \frac{3}{2}b)$, what is $\frac{a}{b}$?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Solution: From the first equality we see that $a=4^t$, and then from the second equality, we have $b = 6^t$ and similarly $a - 3b/2 = 9^t$. Hence, $a(a - 3b/2) = 4^t(9^t) = 36^t = 6^{2t} = b^2$. This implies the equality $a^2 - 3ab/2 - b^2 = 0$ or if we denote by x = a/b (note that $b \neq 0$), we get a quadratic equation in x: $x^2 - 3x/2 - 1 = 0$. We can solve this by using the quadratic formula or by completing the square: $(x - 3/4)^2 = 1 + 9/16 = 25/16$ which gives the only positive solution x = 3/4 + 5/4 = 2. Therefore a/b = 2 (Answer: B).

- 7. The equation $x^{\log_3 x} = \frac{x^3}{9}$ has two solutions, say x_1 and x_2 , with $x_1 < x_2$. What is $x_2 x_1$? Hint: Consider the logarithm base three of each side of the given equation.
 - (A) 2
- (B) 4
- (C) 6
- (D) 8
- (E) 10

Solution: Let us denote by $t = \log_3 x$ and (using the hint) observe that the given equation is equivalent to $\log_3(x^{\log_3 x}) = \log_3(\frac{x^3}{9})$ or $t^2 = 3t - 2$. This last quadratic equation can be solved simply by factorization: (t-1)(t-2) = 0. So, $x_1 = 3^1 = 3$ and $x_2 = 3^2 = 9$. So, C is the correct answer.

8. [*³] In the triangle ABC the angle ∠A is 60° and the angle ∠B is equal to 45°. The angle bisector of the angle ∠A intersects BC at D. Knowing that AD = 10 and that BC = m√n, where m and n are natural numbers with n not divisible by the square of a prime number, what is m + n?

- (B) 15
- (C) 11

- (D) 7
- (E) 3

Solution: We observe that the angle $\angle ADC = 30^{\circ} + 45^{\circ} = 75^{\circ}$ and the angle $\angle ACB = 180^{\circ} - (60^{\circ} + 45^{\circ}) = 75^{\circ}$. Hence, the triangle $\triangle ADC$ is an isosceles triangle, so AD = AC = 10. Using the Law of Sines in $\triangle ABC$, we get

$$\frac{AC}{\sin 45^{\circ}} = \frac{BC}{\sin 60^{\circ}}$$

which implies $BC = 10\sqrt{3}/\sqrt{2} = 5\sqrt{6}$. This means m = 5 and n = 6. Hence the answer is C.

9. $[*^2]In$ thetrapezoidABCD, \overline{AD} . and \overline{CD} are perpendicular to Knowing that AD = 6 < BC =AB + CD, what is $AB \cdot CD$?

- (A) 9
- (B) 8
- (C) 12

- (D) 16
- (E) 6

Solution: Without loss of generality, we may assume that x := AB < y := DC (if these are equal, ABCD is a rectangle, and this is not possible from the assumption AD = 6 < BC.) We observe that if BE is drawn perpendicular to DC (as in the figure associated) then AB = DE = x, BE = 6, EC = y - x, BC = x + y and so, by the Pythagorean theorem in the triangle BEC we obtain $(x+y)^2 = 6^2 + (y-x)^2$ or 4xy = 36. This implies xy = 9, so the answer is A.

10. [*] In the accompanying figure we have a regular octahedron. We denote the dihedral angle between its faces by α (that is, $\alpha =$ $2(m\angle AMO)$). What is the value of $\cos \alpha$?

(B)
$$-\frac{1}{3}$$

(C)
$$-\frac{2}{3}$$

(D)
$$-\frac{1}{4}$$
 (E) $-\frac{3}{4}$

(E)
$$-\frac{3}{4}$$

Solution: As in the figure associated, we let M be the midpoint of \overline{BC} and O the center of the square \overrightarrow{BCDE} . In the triangle \overrightarrow{AMO} we have $\cos\angle \overrightarrow{AMO} = \cos\frac{\alpha}{2} = \frac{OM}{AM}$. Because of the symmetry, OM = CD/2 = BC/2 = MC. The side AM can be found with the Pythagorean theorem in the right triangle AMC: $AM^2 = AC^2 - MC^2 = 4MC^2 - MC^2 = 3MC^2$. Hence, $\cos\frac{\alpha}{2} = \frac{MC}{AM} = \frac{MC}{MC\sqrt{3}}$. Then, using the double angle formula we obtain

$$\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1 = \frac{2}{3} - 1 = -\frac{1}{3}.$$

Therefore, the answer in this case is B.