Solutions to the Third Annual Columbus State Calculus Contest (Version I)

Sponsored by Columbus State University Department of Mathematics April 10^{th} , 2015

1. Sup	pose that f is di	fferentiable and d	efined on \mathbb{R} ,	$g(x) = \ln(x + $	$-\sqrt{x^2+1}$) for	r all real
valı	ues of x , and $h =$	$f \circ g$. If $f'(\ln 2) =$	= 5, what is	$h'(\frac{3}{4})$?		

(A) 1

(B) 2

(C) 3

(D) |4|

(E) 5

Solution: Using the chain rule, we get $h' = (f' \circ g)g'$. But we know that g'(x) = $1/\sqrt{x^2+1}$. Hence,

$$h'(x) = f'(\ln(x + \sqrt{x^2 + 1})) \frac{1}{\sqrt{x^2 + 1}}.$$

Then $h'(3/4) = f'(\ln 2) \frac{4}{5} = 4$. Ergo, the answer is *D*.

2. The function $f(x) = \frac{x+3}{x^2+7}$ defined on the whole real line, has a maximum value of f(a) and a minimum value of f(b). Then, what is the value of 5a + b?

(A) -1

(B) |-2|

(C) -3

(D) -4

(E) -5

Solution: We calculate the derivative, $f'(x) = \frac{(x+7)(1-x)}{(x^2+7)^2}$, and observe that a=1 and b=-7. Hence 5a+b=-2 and the correct answer is B.

3. If for all real x we define $f(x) = e^{4x} - 8e^{2x} + 16x$, then the inverse of f, f^{-1} , exists and it is differentiable. Calculate $(f^{-1})'(-7) = \frac{d}{dx}(f^{-1})(-7)$.

(A) 1

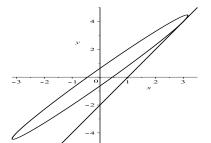
(B) 1/2

(C) 1/3 (D) 1/4

(E) 1/5

Solution: Let us calculate the derivative of f: $f'(x) = 4e^{4x} - 16e^{2x} + 16 = 4(e^{2x} - 2)^2 \ge$ 0. Since $(f^{-1} \circ f)(x) = x$, we can differentiate this equality with respect to x and substitute x = 0 in what we get: $(f^{-1})'(f(0))f'(0) = 1$. This implies $(f^{-1})'(-7)4 = 1$, so the answer is D.

4. The equation of the tangent line the graph of equation $(3x - 2y)^2 + (x - y)^2 = 2$ at the point (3,4) is y = mx + n. What is 2m + n?



- (A) 1
- (B) 2
- (C) 3

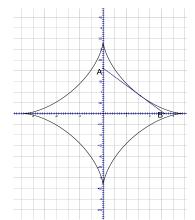
- (D) 4
- (E) 5

Solution: We use implicit differentiation to get 2(3x-2y)(3-2y')+2(x-y)(1-y')=0. Substituting x = 3 and y = 4 gives 2(3 - 2y') - 2(1 - y') = 0. Solving for y', we obtain y'=2. Hence the equation of the tangent line is y=4+2(x-3) or y=2x-2. Hence, the answer is B.

5. The astroid

$$4(x^{\frac{2}{3}} + y^{\frac{2}{3}}) = 9$$

has the property that each segment \overline{AB} in the first quadrant, with A on the y-axis and B on the x-axis and tangent to the astroid, has the same length L. |L| (the integer part of L) in this case.



- (A) 1
- (B) 2
- (C) |3|

- (D) 4
- (E) 5

Solution: To make it easier with the intuition we refer to the figure above. Since the property stated holds true for the limiting position when AB becomes horizontal, we can calculate easily L=x, when y=0. Solving for x in this case, $x=L=\frac{27}{8}=3+\frac{3}{8}$. So, $\lfloor L \rfloor = 3$ which makes C the correct answer.

- 6. The function $F(x) = -x + x \ln(x)$ is defined for every x > 0. For every natural number n, The Mean Value Theorem applied to F on the interval $[a,b]=[e^n,e^{n+1}]$ gives F(b)-F(a)=(b-a)F'(c) with $c\in(a,b)$. If $c=e^{n+\alpha}$, then what is $\frac{1}{\alpha}$?

 - (A) e 2 (B) e 1 (C) e (D) e + 1 (E) e + 2

Solution: Since $F'(x) = \ln x$, $F(e^{n+1}) = e^{n+1}n$, and $F(e^n) = e^n(n-1)$, we get $e^{n+1}n - e^n(n-1) = (e^{n+1} - e^n) \ln c$. This can be simplified to $e^n - n + 1 = (e-1) \ln c$

or $c = e^{n + \frac{1}{e^{-1}}}$. Therefore, we see that the correct answer is D.

7. The values of a and b are chosen in such a way the function k, piecewisely defined by

$$k(x) = \begin{cases} \frac{\sin(2x)}{x} & \text{if } x < 0, \\ ax + b & \text{if } 0 \le x \le 1, \\ \frac{\ln(x)}{x - 1} & \text{if } x > 1, \end{cases}$$

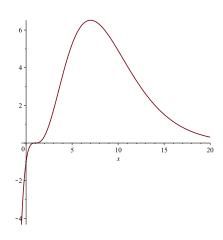
is continuous on the whole real line (graph as in the adjacent figure). What is a + 2b?

$$(C)$$
 3

(E)
$$5$$

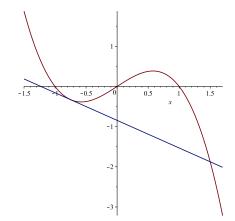
Solution: Using L'Hospital's Rule we get that $\lim_{x \to 0} k(x) = \lim_{x \to 0} 2\cos(2x) = 2$ which means that b = 2. Similarly, $\lim_{x \to 1} k(x) = \lim_{x \to 1} (1/x) = 1$, which means a + b = 1 and so a = -1. Therefore the answer is C.

8. The function $f(x) = (x-1)^3 e^{-x/2}$ has inflection points at $x_1 = 1$, $x_2 = a + b\sqrt{3}$ and $x_3 = a - b\sqrt{3}$ with a and b natural numbers. Then what is a - b?



Solution: First, we calculate the derivative $f'(x) = \frac{1}{2}e^{-x/2}(7-x)(x-1)^2$ and then the second derivative $f''(x) = \frac{1}{4}e^{-x/2}(x-1)(x^2-14x+37)$. This gives $x_{2,3} = 7\pm\sqrt{49-37} = 7\pm2\sqrt{3}$. Hence, the answer is E.

9. The cubic of equation $y = h(x) = x - x^3$ is shown in the figure on the right, together with its tangent line at the point $\left(-\frac{2}{5}, h(-\frac{2}{5})\right)$. This tangent line intersects the cubic at another point: $\left(\frac{m}{n}, h(\frac{m}{n})\right)$, where m and n are relatively prime natural numbers. Find n-m.



(C) 3

Solution: Using the Taylor polynomial to approximate h we get that this is in fact an exact formula:

$$h(x) = h(a) + h'(a)(x - a) + \frac{1}{2}h''(a)(x - a)^{2} + \frac{1}{6}h'''(a)(x - a)^{3},$$

for any point a. So, if we want to solve the equation h(x) = h(a) + h'(a)(x - a), we obtain equivalently, x = a a double root, and the equation -3a - (x - a) = 0 or x = -2a. So, in our particular case the tangent line intersects the curve y = h(x) again at $f(\frac{4}{5}, h(\frac{4}{5}))$. Thus, n - m = 1 and so the correct answer is A.

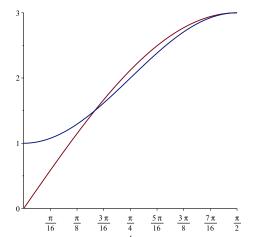
- 10. The function $g(x) = \frac{x^{2015}}{1-x}$ is defined for every $x \in (-1,1)$. If $g^{(n)}$ denotes the n^{th} derivative of g, what is the value of $g^{(2014)}(0)$?
 - (A) 2014!
- (B) 2015!
- (C) 1
- (D) -1
- $(E) \boxed{0}$

Solution: Using the Taylor series for $\frac{1}{1-x} = 1 + x + x^2 + \dots$, we obtain $g(x) = x^{2015} + x^{2016} + \dots$, $x \in (-1,1)$. Then $g'(x) = 2015x^{2014} + \dots$ and inductively $g^{(2014)}(x) = 2015x + (2016x^2) + \dots$ Therefore, $g^{(2014)}(0) = 0$. This gives the answer E.

- 11. The polynomial function $f(x) = x^4 + mx^3 + 6x^2$, defined for all real values of x, has two distinct inflection points if and only if |m| > a. What is the value of a?
 - (A) 1
- (B) 2
- (C) 3
- $(D) \boxed{4}$
- (E) 5

Solution: We calculate the second derivative and obtain $f''(x) = 12x^2 + 6mx + 12 = 6(2x^2 + mx + 2)$. In order to have two distinct inflection points, we need have two distinct real solutions of the quadratic $2x^2 + mx + 2 = 0$. It is then equivalent to requiring that the determinant $\Delta = m^2 - 4^2 > 0$ or |m| > 4. So, the answer is D.

12. The graphs of $y = 3 \sin x$ and $y = 2 - \cos(2x)$ for $x \in [0, \frac{\pi}{2}]$ are shown in the figure on the right. If A is the area between their graphs in this interval, then $A = \frac{m}{n} \sqrt{3} - \frac{2\pi}{3}$ for a reduced fraction m/n. Calculate m-n.



- (A) 1
- (B) 2
- (C) 3

- (D) 4
- (E) 5

Solution: We need to see where the two graphs intersect: $3\sin x = 2 - \cos 2x$ or using one of the double angle formulas, this is equivalent to $3\sin x = 2 - (1 - 2\sin^2 x)$. This can be solved by factoring: $(2\sin x - 1)(\sin x - 1) = 0$. So, we get $\sin x = 1/2$ and $\sin x = 1$. Thus, we need to integrate between $\pi/6$ and $\pi/2$. Ergo, $A = \int_{\pi/6}^{\pi/2} (3\sin x - 2 + \cos(2x)) dx$ which implies

$$A = -3\cos x|_{\pi/6}^{\pi/2} - 2x|_{\pi/6}^{\pi/2} + \frac{\sin 2x}{2}|_{\pi/6}^{\pi/2} = \frac{5\sqrt{3}}{4} - \frac{2\pi}{3}.$$

This shows that A is the correct answer.

13. For m and n relatively prime positive integers, we have

$$\lim_{x \to \pi} \left| \sin x + \cos x \right|^{\sec(\frac{x}{2})} = e^{-m/n}.$$

What is m + 3n?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) $\boxed{5}$

Solution: The limit is equivalent to $\lim_{x\to\pi}\sec(\frac{x}{2})\ln|\sin x + \cos x| = -m/n$. Using L'Hospital's Rule, we have

$$\lim_{x \to \pi} \frac{\cos x - \sin x}{-\frac{1}{2}\sin(x/2)(\sin x + \cos x)} = -2$$

which means m=2 and n=1. This implies the answer is E.

- 14. Consider the function $F(x) = \int_{\ln x}^{\ln(x+1)} \frac{1}{1 + e^{2t}} dt$, for x in (0, 2). Find -5F'(1).
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

Solution: Using the Fundamental Theorem of Calculus we get

$$F'(x) = \frac{1}{1 + (x+1)^2} \frac{1}{1+x} - \frac{1}{1+x^2} \frac{1}{x}.$$

This gives $F'(1) = \frac{1}{10} - \frac{1}{2} = -\frac{2}{5}$ and so, B is the correct answer.

15. We define f by the rule $f(x) = (\sin x)^4 + (\cos x)^4$ for all real numbers x. Knowing that c is the smallest positive number with the property

$$f(c) = \frac{1}{2\pi} \int_0^{2\pi} f(x)dx$$

find $\frac{\pi}{c}$.

- (A) 12
- (B) 10
- (C) $\boxed{8}$
- (D) 6
- (E) 4

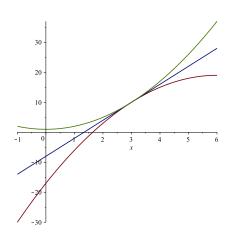
Solution: We can simplify f in the following way

$$f(x) = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}(\sin 2x)^2 = \frac{3}{4} + \frac{1}{4}\cos(4x).$$

So, $\int_0^{2\pi} f(x)dx = \frac{3}{4}(2\pi)$. Then the given equation in c is equivalent to $\cos(4c) = 0$. The smallest positive solution of this equation is clearly given by $4c = \pi/2$, which attracts $\pi/c = 8$. Hence, C is the answer.

- 16. The parabolas $y = x^2 + 1$ and $y = 19 (x a)^2$ are tangent to one another and tangent to the line y = mx + n (as in the Figure on the right). Knowing that a > 0, find 2m + n.
 - (A) 1
- (B) 2
- (C) 3

- (D) $\boxed{4}$
- (E) 5

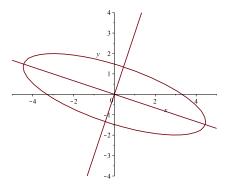


Solution: The common point say (x,y) must satisfy $x^2 + (x-a)^2 = 18$ and 2x =

-2(x-a). This gives x=a/2 and $a^2/4=9$. So, $a=\pm 6$. Since a>0 we get a=6. The equation of the tangent line if then y=6(x-3)+10 or y=6x-8. Hence the answer is D.

17. $[*^1]$ What is the smallest value of $x^2 + y^2$ if $x^2 + 3xy + 5y^2 = 11$?

(C) 3



Solution: We think of a point (x, y(x)) on the curve (see figure above) $x^2 + 3xy + 5y^2 = 11$, and as a function of x we need to minimize $x^2 + y(x)^2$. Hence we look for critical points, or 2x + 2yy' = 0. This implies y' = -x/y. Using implicit differentiation we get 2x + 3y + 3xy' + 10yy' = 0 or $3y^2 - 3x^2 - 8xy = 0$. This homogeneous equation can be solved by factorization (3y + x)(y - 3x) = 0. Then y = 3x or y = -x/3. So, we need to look where the given curve intersects these two lines. First, we look at y = 3x: $x^2 + 3x(3x) + 5(9x^2) = 11$ or $x^2 = \frac{1}{5}$. This gives $x^2 + y^2 = 2$. If we calculate the other intersection points we obtain $x^2 + y^2 = 22$. Therefore, the minimum is 2 and B is the correct answer.

- 18. $[*^2]$ The function E satisfies the differential equation $E(t)^3 E''(t) = -1$ for every $t \le 0$ and the initial conditions E(0) = 1, E'(0) = -1. What is the value of E(-4)?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

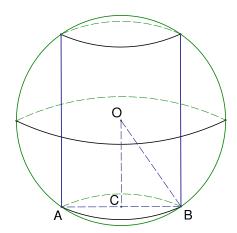
Solution: Multiplying the equation by E'(t) we get $E''(t)E'(t) = -E(t)^{-3}E'(t)$, which can be integrated to $\frac{1}{2}E'(t)^2 = \frac{1}{2}E^{-2}(t) + C$. Using the initial conditions we get $E'(t) = -E^{-1}(t)$ or E(t)E'(t) = -1. We can easily integrate again and obtain $E(t)^2 = -2t + C'$. Then, since E(0) = 1 we finally have $E(t) = \sqrt{1-2t}$, t < 0. Hence E(-4) = 3: answer C.

19. [*3] A cylinder is inscribed in a sphere of radius 3 inches as in the adjacent What is the maximum volume of such a cylinder (in cubic inches)?

(B) $6\pi\sqrt{3}$

(C) $8\pi\sqrt{3}$

(D) $10\pi\sqrt{3}$ (E) $12\pi\sqrt{3}$



Solution: Let x be the radius of the cylinder (in the figure above, the segment CB). Then, in terms of R the radius of the sphere, the height of the cylinder is 2OC = $2\sqrt{R^2-x^2}$. Then the volume is given by $V=\pi x^2(2\sqrt{R^2-x^2})$. Maximizing V is equivalent to maximize $V^2 = 4\pi^2 x^4 (R^2 - x^2)$ and so we need to solve for critical points $4R^2 x^3 - 6x^5 = 0$. It turns out that V has really a maximum for $x_0 = \frac{2R}{\sqrt{6}} \left(\frac{d^2 V^2}{dx^2} (x_0) < 0 \right)$. The maximum is $V(x_0) = 2\pi \frac{R^2}{3} R \frac{\sqrt{3}}{3} = \frac{2\pi R^3 \sqrt{3}}{9} = 6\pi \sqrt{3}$: answer B.

20. $[*^4]$ We denote by L the following limit:

$$L = \lim_{n \to \infty} \left(\frac{n+1}{n} \ln n - \frac{2}{n^2} \sum_{k=1}^{n} k \ln k \right).$$

Find L/(1-L).

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

Solution: We use the Riemann Sums definition of the definite integral for $f(x) = x \ln x$ on the interval (0,1]. We observe that f, extended at the origin by setting f(x)=0, becomes continuous and so it is Riemann integrable on [0,1]. Next, let us observe that, and integration by parts gives,

$$\int_0^1 f(x)dx = \frac{x^2}{2}\ln(x)|_0^1 - \frac{1}{4}x^2|_0^1 = -1/4.$$

Hence

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\frac{k}{n}\ln\frac{k}{n}=-1/4\Leftrightarrow\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\frac{k}{n}(\ln(k)-\ln(n))=-1/4$$

We know that $\sum_{k=1}^{n} k = n(n+1)/2$ and so we can equivalently calculate the above sum:

$$\sum_{k=1}^{n} \frac{k}{n} (\ln(k) - \ln(n)) = \frac{1}{n} (\sum_{k=1}^{n} k \ln k) - \frac{n+1}{2} \ln n.$$

This shows that L = 1/2 and so the correct answer is A.