## Solutions to the Fourth Annual Columbus State Calculus Contest

April 29<sup>th</sup>, 2016

1. The equation of the tangent line to the graph of equation

$$(3x + 2y)^2 + (x - y)^2 = 25$$



(D) 
$$4$$





**Solution:** We use implicit differentiation to get 2(3x+2y)(3+2y')+2(x-y)(1-y')=0. Substituting x=-1 and y=3 gives 3(3+2y')-4(1-y')=0. Solving for y', we obtain y'=-1/2. Hence the equation of the tangent line is y=3-(x+1)/2 or

$$y = -\frac{1}{2}x + \frac{5}{2}$$
. Hence, the answer is  $B$ .

2. The function  $F(x) = \frac{1}{x}$  is defined for every x > 0. The Mean Value Theorem applied to F on the interval [a,b] gives F(b) - F(a) = (b-a)F'(c) with  $c \in (a,b)$ . For a=2 and b=8, then what is c?

(A) 1

- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** Since  $F'(x) = -\frac{1}{x^2}$ , we have  $\frac{1}{b} - \frac{1}{a} = -(b-a)\frac{1}{c^2}$ . After simplifying by b-a we get  $c^2 = ab$  or  $c = \sqrt{ab}$ . In our case  $c = \sqrt{2(8)} = 4$ . Therefore, we see that the correct answer is  $\boxed{D}$ .

3. The function  $g(x) = \frac{1}{x(1-x)}$  is defined for every  $x \in (0,1)$ . If  $g^{(n)}$  denotes the  $n^{th}$  derivative of g, and

$$g^{(2016)}\left(\frac{1}{2}\right) = (2016!)2^{2016+\alpha}$$

what is  $\alpha$ ?

(A) 1

- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** We observe that  $g(x) = \frac{1}{x} + \frac{1}{1-x} = x^{-1} - (x-1)^{-1}$ . We notice that  $g'(x) = -x^{-2} + (x-1)^{-2}$ ,  $g''(x) = 2![x^{-3} - (x-1)^{-3}]$ , and by induction we see that

 $g^{(n)}(x) = (-1)^n n! [x^{-(n+1)} - (x-1)^{-(n+1)}]$  for every n natural number. In particular,  $g^{(2016)}\left(\frac{1}{2}\right) = (2016!)(2^{2017} + 2^{2017}) = (2016!)2^{2018}$  which implies that  $\alpha = 2$ . This gives  $\boxed{B}$  as the correct answer.

4. Suppose that f is defined on  $\mathbb{R}$  by the rule

$$f(x) = x\sqrt{x^2 + 1} + \ln(x + \sqrt{x^2 + 1}).$$

If  $h = f \circ f$ , what is h'(0)?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** Using the chain rule, we get  $h' = (f' \circ f)f'$ . So we need do compute

$$f'(x) = \sqrt{x^2 + 1} + \frac{x^2}{\sqrt{x^2 + 1}} + \frac{1}{\sqrt{x^2 + 1}} = 2\sqrt{x^2 + 1}.$$

Hence,  $h'(0) = f'(f(0))f'(0) = f'(0)^2 = 2^2 = 4$ . Ergo, the answer is  $\boxed{D}$ .

- 5. The function  $G(x) = (x^2 + m)e^x$ , defined for all real values of x and m a fixed real valued constant, has two distinct inflection points if and only if m < a. What is the value of a ?
  - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** We calculate the second derivative and obtain  $G''(x) = (x^2 + m + 4x + 2)e^x$ . In order to have two distinct inflection points, we need have two distinct real solutions of the quadratic  $x^2 + 4x + m + 2 = 0$ . It is then equivalent to requiring that its determinant  $\Delta = 16 - 4(m+2) = 8 - 4m > 0$  or m < 2. So, the answer is B.

- 6. The function  $g(x) = \frac{x+1}{x^2+8}$  defined on the whole real line, has a maximum value of g(a) and a minimum value of g(b). Then, what is the value of (a-b)/2?
  - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** We calculate the derivative,  $g'(x) = -\frac{(x+4)(x-2)}{(x^2+7)^2}$ , and observe that a=2 and b=-4. Hence (a-b)/2=3 and the correct answer is C.

7. For m a positive integer, we have

$$\lim_{x \to 0} \left| \cos x + \sin 2x + \sin 3x \right|^{\cot x} = e^m.$$

What is m?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** The limit is equivalent to  $\lim_{x\to 0} \cot x \ln |\cos x + \sin 2x + \sin 3x| = m$ . Using L'Hospital's Rule, we have

$$m = \lim_{x \to 0} \frac{\sin x + 2\cos 2x + 3\cos 3x}{\cos x + \sin 2x + \sin 3x} = 5$$

This implies the answer is  $\boxed{E}$ .

8. If for all real x we define  $f(x) = 6x^5 - 15x^4 + 10x^3$ , then the inverse of f,  $f^{-1}$ , exists and it is differentiable. The derivative of the inverse function at 1/2 is a rational number, i.e.,

$$(f^{-1})'(\frac{1}{2}) = \frac{d}{dx}(f^{-1})(\frac{1}{2}) = \frac{m}{n},$$

which is written in reduced form using two natural numbers  $m, n \in \mathbb{N}$ . What is 2m-n?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** Let us calculate the derivative of f:

$$f'(x) = 30x^4 - 60x^3 + 30x^2 = 30x^2(x-1)^2 > 0$$

and so f is strictly increasing. Since  $(f^{-1} \circ f)(x) = x$ , we can differentiate this equality with respect to x and substitute x = 1/2 in what we get:  $(f^{-1})'(f(1/2))f'(1/2) = 1$ . This implies  $(f^{-1})'(1/2) = \frac{8}{15}$ , so the answer is A.

9. The number k is the smallest positive number with the property

$$|\sin x - 2\cos x|^2 \le k$$

for all real numbers x. Find the value of k.

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** If we denote by  $\alpha$  the angle in the first quadrant, such that  $\sin \alpha = \frac{2}{\sqrt{5}}$ . It follows that  $\cos \alpha = \frac{1}{\sqrt{5}}$ . with this notation we can change the inequality to

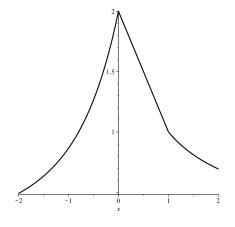
$$(\sin x \cos \alpha - \sin \alpha \cos x)^2 \le \frac{k}{5} \Leftrightarrow \sin(x - \alpha)^2 \le \frac{k}{5}.$$

This shows that k = 5, which makes E the correct answer.

10. The values of a and b are chosen in such a way the function k, piecewisely defined by

$$k(x) = \begin{cases} \frac{e^{2x} - 1}{x} & \text{if } x < 0, \\ ax + b & \text{if } 0 \le x \le 1, \\ \frac{\ln x}{x - 1} & \text{if } x > 1, \end{cases}$$

is continuous on the whole real line (graph as in the adjacent figure). What is a + 2b?



- (A) 1
- (B) 2
- (C) 3

- (D) 4
- (E) 5

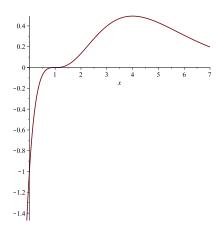
**Solution:** Using L'Hospital's Rule we get that  $\lim_{x \to 0} k(x) = \lim_{x \to 0} 2e^{2x} = 2$  which means that b = 2. Similarly,  $\lim_{x \to 1} k(x) = \lim_{x \to 1} (1/x) = 1$ , which means a + b = 1 and so a = -1. Therefore the answer is C.

11. The function  $f(x) = (x-1)^3 e^{-x}$  has inflection points at  $x_1 = 1$ ,  $x_2 = a + b\sqrt{3}$  and  $x_3 = a - b\sqrt{3}$  with a and b natural numbers. Then what is a - 3b?



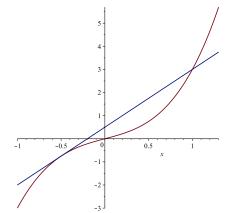
- (B) 2
- (C) 3

- (D) 4
- (E) 5



**Solution:** First, we calculate the derivative  $f'(x) = (4-x)(x-1)^2 e^{-x}$  and then the second derivative  $f''(x) = e^{-x}(x^2 - 8x + 13)(x-1)$ . Solving for f''(x) = 0 gives  $x_1 = 1$  and  $x_{2,3} = 4 \pm \sqrt{3}$ . Hence, the answer is  $\boxed{A}$ .

12. The cubic of equation  $y = h(x) = x + 2x^3$  is shown in the figure on the right, together with its tangent line at the point  $\left(-\frac{3}{4}, h(-\frac{3}{4})\right)$ . This tangent line intersects the cubic at another point:  $\left(\frac{m}{n}, h(\frac{m}{n})\right)$ , where m and n are relatively prime natural numbers. Find 2m - n.



$$(C)$$
 3

**Solution:** Assuming that  $h(x) = c_0 x^3 + c_1 x^2 + c_2 x + c_3$ , using the Taylor polynomial to approximate h we get that this is in fact an exact formula:

$$h(x) = h(a) + h'(a)(x - a) + \frac{1}{2}h''(a)(x - a)^{2} + \frac{1}{6}h'''(a)(x - a)^{3},$$

for any point a. So, if we want to solve the equation h(x) = h(a) + h'(a)(x - a), we obtain equivalently, x = a a double root, and the equation  $3c_0a + c_1 + c_0(x - a) = 0$  or  $x = -2a - \frac{c_1}{c_0}$ . So, in our particular case the tangent line intersects the curve y = h(x) again at  $(\frac{3}{2}, h(\frac{3}{2}))$ . Thus, 2m - n = 4 and so the correct answer is  $\boxed{D}$ .

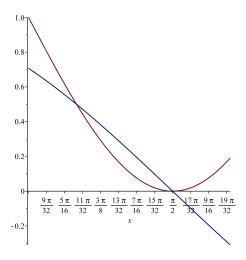
13. The graphs of  $y = \cos x$  and  $y = 1 + \cos(2x)$  for  $x \in \left[\frac{\pi}{4}, \frac{3\pi}{5}\right]$  are shown in the figure on the right. If A is the area between their graphs in this interval, then

$$A = 1 - \frac{m}{n}\sqrt{3} - \frac{\pi}{6}$$

for a reduced fraction m/n, where m and n are natural numbers. What is n?



(D) 
$$4$$



**Solution:** We need to see where the two graphs intersect:  $\cos x = 1 + \cos 2x$  or using one of the double angle formulas, this is equivalent to  $\cos x = 2\cos^2 x$ . So, we get  $\cos x = 0$  or  $\cos x = 1/2$ . Thus, we need to integrate between  $\pi/3$  and  $\pi/2$ . Hence,  $A = \int_{\pi/3}^{\pi/2} (\cos x - 1 - \cos 2x) dx$  which implies

$$A = \sin x \Big|_{\pi/3}^{\pi/2} - x \Big|_{\pi/3}^{\pi/2} - \frac{\sin 2x}{2} \Big|_{\pi/3}^{\pi/2} = 1 - \frac{1}{4}\sqrt{3} - \frac{\pi}{6}.$$

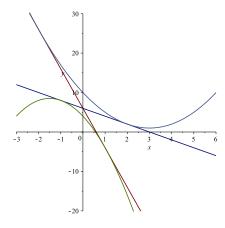
This shows that  $\boxed{D}$  is the correct answer.

14.  $[*^1]$  The parabolas  $y = x^2 - 6x + 10$  and  $y = 4 - 6x - 2x^2$  have two lines that are tangent to both of them (as in the accompanying figure). If the equations of these tangent lines are y = mx + n and y = px + q with k = m/p > 1, what is k?



- (A) 1
- (B) 2
- (C) 3

- (D) 4
- (E) 5



**Solution:** Assuming that the line of equation y = mx + n is tangent to both parabolas, it means that the polynomials  $x^2 - 6x + 10 - mx - n = x^2 - (m+6)x + 10 - n$  and  $2x^2 + 6x - 4 + mx + n = 2x^2 + (6+m)x + n - 4$  are both perfect squares. This is equivalent to  $(m+6)^2 - 4(10-n) = (6+m)^2 - 4(2)(n-4) = 0$ . This system gives n = 6 and  $m_1 = -2$  or  $m_2 = -10$ . Hence the answer is E.

15. The nonzero function E satisfies the differential equation  $E'(t) = E(t)^{2016}$  for every t real number and the initial conditions E(0) = 1. If

$$E(-1)^{-2015} = 2015 + \alpha$$

what is the value of  $\alpha$ ?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** The equation is equivalent to  $E'(t)E(t)^{-2016}=1$ , which can be integrated to  $\frac{1}{2015}(1-E(t)^{-2015})=t$ . If we plug in t=-1 we obtain  $\alpha=1$ . Hence, the answer is A.

16. Consider the function  $F(x) = \int_{\tan x}^{\tan 2x} \frac{1}{(1+t^2)^2} dt$ , for x in  $(0, \pi/4)$ . If for every x we have

$$F'(x) = a(\cos x)^4 + b(\cos x)^2 + c$$

for some constants a, b and c, what is a + b + c?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

Solution: Using the Fundamental Theorem of Calculus we get

$$F'(x) = \frac{1}{(1 + \tan^2 2x)^2} 2\sec^2 2x - \frac{1}{(1 + \tan^2 x)^2} \sec^2 x,$$

or,

$$F'(x) = 2\cos^2 2x - \cos^2 x = 2(2\cos^2 x - 1)^2 - \cos^2 x = 8\cos^4 x - 9\cos^2 x + 2.$$

So,  $\boxed{A}$  is the correct answer.

- 17. The recurrent sequence  $\{x_n\}$  satisfies the recurrence  $x_{n+1} = 2x_n(1-x_n)$  for every  $n \ge 1$  and  $x_1 = 1/2016$ . Knowing that  $\{x_n\}$  is convergent to L, what is  $L^{-1}$ ?
  - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** Since  $x_{n+1}$  converges to L, we have the equation in L: L = 2L(1 - L). We either get L = 0 or  $L = \frac{1}{2}$ . It is easy to see that  $x_n$  is non-decreasing. Indeed,  $x_{n+1} \leq [x_n + (1-x_n)]^2/2 = 1/2$  and so  $x_{n+1} \geq x_n$  is equivalent to  $2(1-x_n) \geq 1$  or  $x_n \leq 1/2$ . This implies  $L^{-1} = 2$  and then the answer is B.

18. We define f by the rule  $f(x) = (\sin x)^6 + (\cos x)^6$  for all real numbers x. Knowing that c is the smallest positive number with the property

$$f(c) = \frac{1}{2\pi} \int_0^{2\pi} f(x)dx$$

find  $\frac{\pi}{c}$ .

- (A) 12
- (B) 10
- (C) 8
- (D) 6
- (E) 4

**Solution:** We can simplify f in the following way

$$f(x) = (\sin^2 x)^3 + (\cos^2 x)^3 = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x = 1 - 3\sin^2 x \cos^2 x, \Leftrightarrow$$

$$f(x) = 1 - \frac{3}{4}\sin^2 2x = 1 - \frac{3}{8}(1 - \cos 4x) = \frac{5}{8} + \frac{3}{8}\cos 4x.$$

So,  $\int_0^{2\pi} f(x)dx = \frac{5}{8}(2\pi)$ . Then the given equation in c is equivalent to  $\cos(4c) = 0$ . The smallest positive solution of this equation is clearly given by  $4c = \pi/2$ , which attracts  $\pi/c = 8$ . Hence, C is the answer.

19.  $[*^2]$  We denote by L the following limit:

$$L = \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} k^2 e^{\frac{k}{n}}.$$

Find e - L.

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** We use the Riemann Sums definition of the definite integral for  $f(x) = x^2 e^x$  on the interval (0,1]. We can compute easily  $\int_0^2 f(x) dx = e^x (x^2 - 2x + 2)|_0^1 = e - 2$ . Hence

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k^2}{n^2} e^{\frac{k}{n}} = e - 2.$$

This shows that L = e - 2 and so the correct answer is  $\boxed{B}$ 

20. [\*3] What is the smallest value of  $2x^2 + y^2$  if  $x^2 + 6xy + 4y^2 = 25$ ?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** We think of a point (x, y(x)) on the curve  $x^2 + 6xy + 4y^2 = 25$ , and as a function of x we need to minimize  $2x^2 + y(x)^2$ . Hence we look for critical points, or 4x + 2yy' = 0. This implies y' = -2x/y. Using implicit differentiation we get 2x + 6y + 6xy' + 8yy' = 0 or  $6x^2 + 7xy - 3y^2 = 0$ . This homogeneous equation can be solved by factorization (2x + 3y)(3x - y) = 0. Then y = 3x or y = -2x/3.

First, we look at y = 3x:  $x^2 + 6x(3x) + 4(9x^2) = 25$  or  $x^2 = \frac{5}{11}$ . This gives  $2x^2 + y^2 = \frac{10}{11} + \frac{9(5)}{11} = 5$ .

The other case gives no intersection with the curve. The curve is a hyperbola  $((x + 3y)^2 - 5y^2 = 25)$  and so  $2x^2 + y^2$  can be as large as we want. Therefore, the minimum is 5 and  $\boxed{E}$  is the correct answer.