## Solutions to the Fourth Annual Columbus State Calculus Pre-calculus contest

Sponsored by Columbus State University Department of Mathematics April  $29^{th}$ , 2016

| 1. | Given | two | positive | real | numbers | x | and y | such | that $x^2$ | $y^5 =$ | 256 | and a | $x^3y^8 =$ | 8192, | find |
|----|-------|-----|----------|------|---------|---|-------|------|------------|---------|-----|-------|------------|-------|------|
|    | xy.   |     |          |      |         |   |       |      |            |         |     |       |            |       |      |

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** The first equality is equivalent to  $x^2y^5 = 2^8$  or after raising everything to power 5 we get  $x^{10}y^{25} = 2^{40}$ . The second equality is the same as  $x^3y^8 = 2^{13}$  or after exponentiating to power 3 we obtain  $x^9y^{24} = 2^{39}$ . Diving these equalities gives

$$xy = \frac{x^{10}y^{25}}{x^9y^{24}} = \frac{2^{40}}{2^{39}} = 2.$$

So, the answer is B.

2. What is the product of all real x such that  $(4^x - 8)^3 + (8^x - 4)^3 = (4^x + 8^x - 12)^3$ ?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** If we set  $a = 4^x - 8$  and  $b = 8^x - 4$ , we observe that the given equation is equivalent to  $a^3 + b^3 = (a + b)^3$ . This simplifies to  $a^3 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3$  or 3ab(a + b) = 0. Hence, the only solutions are a = 0, b = 0 or a = -b. The first implies x = 3/2, the second implies x = 2/3. The last equality can be written as  $2^{3x} + 2^{2x} - 12 = 0$  or in factor form (we see that x = 1 is a particular solution),  $(2^x - 2)[2^{2x} + 3(2^x) + 6] = 0$ . Since  $2^x > 0$  we observe that x = 1 is the only solution. So, A is the correct answer since (3/2)(2/3)(1) = 1.

3.  $[*^1]$  The trigonometric equation

$$\frac{\sqrt{3} - 1}{\sin x} + \frac{\sqrt{3} + 1}{\cos x} = 4\sqrt{2},$$

has two solutions in the interval  $(0, \frac{\pi}{2})$ , say  $\alpha$  and  $\beta$  (written in radians) with  $\alpha < \beta$ . We have  $\frac{\beta}{\alpha} = \frac{m}{n}$ , for m and n relatively prime positive integers. What is m - 3n?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

**Solution:** If we divide by 2 and observe that  $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$  and  $\cos \frac{\pi}{3} = \frac{1}{2}$ , the equation can be written as

$$\frac{\cos\frac{\pi}{6} - \cos\frac{\pi}{3}}{\sin x} + \frac{\cos\frac{\pi}{6} + \cos\frac{\pi}{3}}{\cos x} = 4\sin\frac{\pi}{4}.$$

Now using the formulae  $\cos a - \cos b = 2 \sin \frac{b-a}{2} \sin \frac{a+b}{2}$  and  $\cos a + \cos b = 2 \cos \frac{a-b}{2} \cos \frac{a+b}{2}$ , we can continue the above as

$$\frac{2\sin\frac{\pi}{12}\sin\frac{\pi}{4}}{\sin x} + \frac{2\cos\frac{\pi}{12}\cos\frac{\pi}{4}}{\cos x} = 4\sin\frac{\pi}{4}.$$

Since  $\sin \frac{\pi}{4} = \cos \frac{\pi}{4}$  we can simplify by  $2\cos \frac{\pi}{4}$  and after eliminating the denominators we obtain

$$\sin\frac{\pi}{12}\cos x + \cos\frac{\pi}{12}\sin x = 2\sin x\cos x \Leftrightarrow \sin(\frac{\pi}{12} + x) = \sin 2x.$$

From here we can solve for all the solutions,  $\frac{\pi}{12} + x = 2x$  gives  $\alpha = \frac{\pi}{12}$ , and  $\frac{\pi}{12} + x = \pi - 2x$  gives  $\beta = \frac{11\pi}{36}$ . Therefore,  $\frac{\beta}{\alpha} = \frac{11}{3}$  which shows that m - 3n = 2, so the answer is B.

4. The positive integer M has two digits, i.e., M = 10a+b for some a and b in  $\{0, 1, ..., 9\}$ . Knowing that

$$1 + 2 + \dots + M = 2016$$

what is a - b?

**Solution:** We need to solve the quadratic equation M(M+1)/2 = 2016 or  $M^2 + M = 4032$ . Multiplying by 4 and adding both sides 1, turns this into  $(2M+1)^2 = 16129 = 127^2$ . Hence, M = (127-1)/2 = 63 (the second solution is a negative integer). Then a = 6 and b = 3 which shows that  $\boxed{C}$  is the correct choice here.

5. Find the number of ordered pairs of integers (a, b), 1 < a < 15, such that

$$a^2 + b^2 - ab^2 - ab + b = 1$$
.

(A) 1 (B) 2 (C) 3 (D) 4 (E) 
$$5$$

**Solution:** The equation can be written as  $(a-1)(a+1) - b^2(a-1) - b(a-1) = 0$  and since we have a > 1, we can simplify it to  $a+1 = b^2 + b$ . As in the Problem 4, we can write this as  $4a+5 = (2b+1)^2$ . So, 4a+5 is a perfect odd square between 13 and 65:  $5^2$  and  $7^2$ . This gives the pairs (5,2), (5,-3), (11,3), and (11,-4). Therefore, the answer is  $\boxed{D}$ .

6. Find the number of solutions (x, y) (ordered pairs of real numbers) of the system

$$\begin{cases} |x+y+1| = |x-y+2| \\ |x-2y+3| = |2x-y+4| \end{cases}.$$

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

**Solution:** The first equation is equivalent to  $x+y+1=\pm(x-y+2)$ . So, we get either  $y=\frac{1}{2}$  or  $x=-\frac{3}{2}$ . If  $y=\frac{1}{2}$ , the second equation is equivalent to  $x+2=\pm(2x+\frac{7}{2})$ . This leads to either  $x=-\frac{3}{2}$  or  $x=-\frac{11}{6}$ . So, in this case the solutions are  $\left(-\frac{3}{2},\frac{1}{2}\right)$  and  $\left(-\frac{11}{6},\frac{1}{2}\right)$ .

If  $x = -\frac{3}{2}$ , the second equation becomes  $\frac{3}{2} - 2y = \pm (1 - y)$ . Form here, we either get  $y = \frac{1}{2}$  which leads to the same first pair as before, or  $y = \frac{5}{6}$ . Hence, the number of solutions is 3, and the correct answer is C.

7. [\*²] In the accompanying figure we have a right triangle  $\triangle ABC$ ,  $\angle A = 90^{\circ}$ ,  $m(\angle B) > m(\angle C)$  (measured in degrees). Perpendiculars on  $\overline{AB}$  and  $\overline{AC}$  at B and C respectively, intersect the angle bisector of the angle  $\angle A$  at F and E respectively. Knowing that EF = BC, what is  $\frac{m(\angle B)}{m(\angle C)}$ ?



- (A) 1
- (B) 2
- (C) 3

- (D) 4
- (E) 5

**Solution:** The two triangles  $\triangle ABF$  and  $\triangle ACE$  are isosceles right triangles. So, if the sides of  $\triangle ABC$  are denoted as usual AB=c, AC=b and BC=a then the information given translates into

$$b^{2} + c^{2} = a^{2} = (AE - AF)^{2} = (b\sqrt{2} - c\sqrt{2})^{2} = 2(b^{2} - 2bc + c^{2}) \Leftrightarrow$$
$$b^{2} - 4bc + c^{2} = 0 \Leftrightarrow \frac{c}{b} = 2 \pm \sqrt{3}.$$

By hypothesis  $\frac{c}{b} < 1$ , so  $\tan \angle C = \frac{c}{b} = 2 - \sqrt{3}$ . This implies

$$\tan 2\angle C = \frac{2\tan \angle C}{1-\tan^2 \angle C} = \frac{\sqrt{3}}{3} = \tan 30^\circ.$$

Hence,  $m(\angle C) = 15^{\circ}$  and  $m(\angle B) = 75^{\circ}$ . Since  $m(\angle B) = 5m(\angle C)$  we see that the correct answer is E.

8. [\*³] In the accompanying figure we have a section ABCD into a cube of side-lengths 1, which cuts the cube along the diagonal  $\overline{AC}$ , and points B and D divide the respective sides into ratios (top to bottom) 3:5 and 5:3. The area of ABCD is equal to  $\frac{m\sqrt{2}}{n}$  with m and n relatively prime positive integers. What is n-m?



**Solution:** Let us work with the general situation, i.e., the ratio given is simply a number t. One can use Heron's Formula to compute the area of the triangle ACD since  $AC = \sqrt{3}$ ,  $AD = BC = \sqrt{1 + t^2/(1 + t)^2}$  and  $CD = \sqrt{1 + 1/(1 + t)^2}$ . In this case it is useful to use a different version of Heron's Formula:

$$A = \frac{1}{4}\sqrt{2(a^2b^2 + b^2c^2 + c^2a^2) - (a^4 + b^4 + c^4)}, \text{ or }$$

$$A = \frac{1}{4}\sqrt{2a^2(b^2 + c^2) - a^4 - (b^2 - c^2)^2}.$$

We observe that we can set  $a^2=3$ ,  $b^2=1+t^2/(1+t)^2$  and  $c^2=1+1/(1+t)^2$  in the above formula. This gives  $A^2=\frac{1}{16}[\frac{8(t^2+t+1)}{(t+1)^2}]$ . Hence, we obtain the general formula

$$Area(ABCD) = 2A = \frac{\sqrt{2(t^2 + t + 1)}}{t + 1}.$$

In this case t = 5/3 and so because  $5^2 + 5(3) + 3^2 = 49 = 7^2$  we get  $Area(ABCD) = \frac{7}{8}\sqrt{2}$ . Therefore, the correct answer is A.

9. [\*4] In the triangle  $\triangle ABC$ , AB = 5, BC = 7, AC = 9 and D is on  $\overline{AC}$  with BD = 5. The ratio  $\frac{AD}{DC} = \frac{m}{n}$  with m and n relatively prime positive integers. What is 3n - m?



- (A) 1
- (B) 2
- (C) 3

- (D) 4
- (E) 5

**Solution:** Using the law of cosines in the triangle  $\triangle ABC$ , we obtain

$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2(AB)(AC)} = \frac{13}{30}.$$

Using the law of cosines in the triangle  $\triangle BAD$ , and letting AD = x, we get the equation in x:

$$\frac{19}{30} = \frac{5^2 + x^2 - 5^2}{2(5)x} = \frac{x}{10},$$

which implies  $x = \frac{19}{3}$  and  $DC = \frac{8}{3}$ . Hence,  $\frac{AD}{DC} = \frac{19}{8}$  and so the answer is  $\boxed{E}$ .

10.  $[*^5]$  If x, y and z are positive numbers satisfying

$$\begin{cases} x + \frac{1}{y} = 2\\ y + \frac{1}{z} = \frac{3}{4}\\ z + \frac{1}{x} = 14\\ xyz > 1 \end{cases}.$$

What is the value of xyz?

Solution: If we multiply all equalities term by term we obtain

$$xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} = 21.$$

Subtracting all the given equations from this, we obtain  $xyz + \frac{1}{xyz} = 4 + \frac{1}{4}$ . This is a quadratic equation in xyz with obvious solutions 4 and 1/4. Hence, the answer is  $\boxed{D}$ .